

How Easy is Code Equivalence over GF(q)?

Dimitris E. Simos (joint work with Nicolas Sendrier)

> Project-Team SECRET INRIA Paris-Rocquencourt

October 10, 2012 JOURNÉES CODAGE ET CRYPTOGRAPHIE (C2) Dinard, France

Outline of the Talk

- Motivation
- Previous Work

Outline of the Talk

Code Equivalence Problem

- Motivation
- Previous Work

2 Support Splitting Algorithm

- Mechanics
- Generalization

Outline of the Talk

Code Equivalence Problem

- Motivation
- Previous Work

2 Support Splitting Algorithm

- Mechanics
- Generalization

3 Research Problems

Code Equivalence of Linear Codes

Equivalence of Linear Codes over \mathbb{F}_q

Two linear codes C, C' ⊆ 𝔽ⁿ_q are called semi-linear equivalent if there exist a permutation σ of I_n = {1,..., n}, an n-tuple λ = (λ_i)_{i∈In} of (𝔽^{*}_q)ⁿ and a field automorphism α ∈ Aut(𝔽_q):

$$(x_i)_{i\in I_n} \in C \iff (\alpha(\lambda_{\sigma^{-1}(i)}x_{\sigma^{-1}(i)}))_{i\in I_n} \in C$$

- ▶ If q is prime, $Aut(\mathbb{F}_q)$ is trivial $\implies C$ is linear equivalent to C'
- ▶ If q = 2, $\lambda_i = 1$, $i \in I_n \implies C$ is permutation equivalent to C'
- Notation: $C \sim C'$

CODE EQUIVALENCE Problem

- ▶ Input: Two [n, k] linear codes C and C' over \mathbb{F}_q
- **Decide**: Are $C \sim C'$?
- Search: Given $C \sim C'$, find $\sigma \in S_n, \lambda \in (\mathbb{F}_q^*)^n, \alpha \in \operatorname{Aut}(\mathbb{F}_q)$

イロン 不聞 とくほど 不良とう ほ

Motivation for Code Equivalence

Relation to Error-Correcting Capability

Equivalent codes have the same error-correction properties (i.e. decoding)

Classification Enumeration of equivalence classes of linear codes

Application in Code-based Cryptography

- The public key of the McEliece cryptosystem is a randomly permuted binary Goppa code [McEliece, 1978]
- McEliece-like cryptosystems over \mathbb{F}_q have recently emerged
 - ▶ Wild Goppa codes [Bernstein, Lange and Peters, 2010]
- Identification schemes from error-correcting codes
 - Zero-knowledge protocols [Girault, 1990]

What is known for Code Equivalence? Inita-

Algorithms and Complexity

Complexity

 \overline{PCE} over \mathbb{F}_2 is difficult to decide in the worst case:

- 1 not NP-complete
- at least as hard as GRAPH ISOMORPHISM [Petrank and Roth, 1997]
- **Orrest Recent result for** \mathbb{F}_q : GI \prec PCE [Grochow, 2012]
- **4** Assuming an oracle for LCE or SLCE \implies PCE \prec LCE or SLCE
- **O** PCE over \mathbb{F}_{a} resists quantum Fourier sampling; Reduction of PCE to the HIDDEN SUBGROUP PROBLEM [Dinh, Moore and Russell, 2011]

Recent Algorithms

- Adaptation of Hypergraph Isomorphism algorithms for PCE over \mathbb{F}_{q} [Babai, Codenotti and Grochow, 2011]
- Computation of canonical forms of linear codes for LCE over \mathbb{F}_q , for q small [FeuIner, 2009, 2011]
- Support splitting algorithm for PCE over \mathbb{F}_{a} [Sendrier, 2000]
- ▶ No efficient algorithm for LCE or SLCE is known

Invariants and Signatures

for a given Linear Code

Invariants of a Code

- A mapping \mathcal{V} is an invariant if $C \sim C' \Rightarrow \mathcal{V}(C) = \mathcal{V}(C')$
- Any invariant is a global property of a code

Weight Enumerators are Invariants

$$C \sim C' \Rightarrow \mathcal{W}_C(X) = \mathcal{W}_{C'}(X) \text{ or } \mathcal{W}_C(X) \neq \mathcal{W}_{C'}(X) \Rightarrow C \not\sim C'$$

$$\mathcal{W}_C(X) = \sum_{i=1}^{n} A \cdot X^i \text{ and } A := |\{c \in C \mid w(c) = i\}|$$

•
$$\mathcal{W}_{\mathcal{C}}(X) = \sum_{i=0}^{n} A_i X^i$$
 and $A_i = |\{c \in \mathcal{C} \mid w(c) = i\}|$

Signature of a Code

- A mapping S is a signature if $S(\sigma(C), \sigma(i)) = S(C, i)$
- Property of the code and one of its positions (local property)

Building a Signature from an Invariant

Internetics

The Support Splitting Algorithm (I) Design of the Algorithm

Discriminant Signatures

- **9** A signature S is discriminant for C if $\exists i \neq j, S(C, i) \neq S(C, j)$
- **2** S is fully discriminant for C if $\forall i \neq j, S(C, i) \neq S(C, j)$

The Procedure [Sendrier, 2000]

- ▶ From given signature S and code C, we wish to build a sequence S₀ = S, S₁,..., S_r of signatures of increasing "discriminancy" such that S_r is fully discriminant for C
- Achieved by succesive refinements of the signature S

Properties of \mathcal{SSA}

- **9** SSA(C) returns a labeled partition P(S, C) of I_n
- **②** Assuming the existence of a fully discriminant signature, SSA(C) recovers the desired permutation σ of $C' = \sigma(C)$

Fully Discriminant Signatures

Statement

If $C' = \sigma(C)$ and S is fully discriminant for C then $\forall i \in I_n \exists$ unique $j \in I_n$ such that S(C, i) = S(C', j) and $\sigma(i) = j$

An Example of a Fully Discriminant Signature

 $\mathcal{C} = \{1110, 0111, 1010\} \text{ and } \mathcal{C}' = \{0011, 1011, 1101\}$

$$\begin{cases} C_{\{1\}} = \{110, 111, 010\} \rightarrow \mathcal{W}_{C_{\{1\}}}(X) = X + X^2 + X^3 \\ C_{\{2\}} = \{110, 011\} \rightarrow \mathcal{W}_{C_{\{2\}}}(X) = 2X^2 \\ C_{\{3\}} = \{110, 011, 100\} \rightarrow \mathcal{W}_{C_{\{3\}}}(X) = X + 2X^2 \\ C_{\{4\}} = \{111, 011, 101\} \rightarrow \mathcal{W}_{C_{\{4\}}}(X) = 2X^2 + X^3 \\ \begin{cases} C'_{\{1\}} = \{011, 101\} \rightarrow \mathcal{W}_{C'_{\{4\}}}(X) = 2X^2 + X^3 \\ C'_{\{2\}} = \{011, 111, 101\} \rightarrow \mathcal{W}_{C'_{\{2\}}}(X) = 2X^2 + X^3 \\ C'_{\{3\}} = \{001, 101, 111\} \rightarrow \mathcal{W}_{C'_{\{3\}}}(X) = X + X^2 + X^3 \\ C'_{\{4\}} = \{001, 101, 110\} \rightarrow \mathcal{W}_{C'_{\{4\}}}(X) = X + 2X^2 \end{cases}$$

$$C' = \sigma(C) \text{ where } \sigma(1) = 3, \sigma(2) = 1, \sigma(3) = 4 \text{ and } \sigma(4) = 2$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

How to Refine a Signature

An Example of a Refined Signature

$$C = \{01101, 01011, 01110, 10101, 11110\}$$

$$C' = \{10101, 00111, 10011, 11100, 11011\}$$

Refinement: Positions $\{2,3\}$ in C and $\{1,5\}$ in C' cannot be discriminated, but

$$\begin{cases} \mathcal{W}_{C_{\{1,2\}}}(X) &= 3X^2 &= \mathcal{W}_{C'_{\{2,5\}}}(X) \Rightarrow \sigma(\{1,2\}) = \{2,5\} \\ \mathcal{W}_{C_{\{1,3\}}}(X) &= X + 2X^2 + X^3 &= \mathcal{W}_{C'_{\{2,1\}}}(X) \Rightarrow \sigma(\{1,3\}) = \{2,1\} \end{cases}$$

Thus $\sigma(1) = 2$, $\sigma(2) = 5$, $\sigma(3) = 1$, $\sigma(4) = 4$ and $\sigma(5) = 3$

Fundamental Properties of \mathcal{SSA}

• If
$$C' = \sigma(C)$$
 then $\mathcal{P}'(S, C') = \sigma(\mathcal{P}(S, C))$
• The **output** of $\mathcal{SSA}(C)$ where $C = \langle G \rangle$ is independent of G

The Support Splitting Algorithm (II) Practical Issues

A Good Signature

The mapping $(C, i) \mapsto W_{\mathcal{H}(C_i)}(X)$ where $\mathcal{H}(C) = C \cap C^{\perp}$ is a signature which is, for random codes,

- easy to compute because of the small dimension [Sendrier, 1997]
- ▶ discriminant, i.e. $W_{\mathcal{H}(C_i)}(X)$ and $W_{\mathcal{H}(C_i)}(X)$ are "often" different

Algorithmic Cost

Let C be a binary code of length n, and let $h = \dim(\mathcal{H}(C))$:

- First step: $\mathcal{O}(n^3) + \mathcal{O}(n2^h)$
- Each refinement: $\mathcal{O}(hn^2) + \mathcal{O}(n2^h)$
- Number of refinements: $\approx \log n$

Total (heuristic) complexity: $\mathcal{O}(n^3 + 2^h n^2 \log n)$

• When $h \longrightarrow 0 \Longrightarrow SSA$ runs in polynomial time

The Closure of a Linear Code (I)

Approach for the Generalization of \mathcal{SSA}

- ▶ Reduce LCE or SLCE to PCE
- ▶ Recall that SSA solves PCE in $O(n^3)$ (for "several" instances)

Closure of a Code

Let p be a primitive element of \mathbb{F}_q . The closure \overline{C} of a code $C \subseteq \mathbb{F}_q^n$ is a code of length (q-1)n over the same field where:

$$(x_1,\ldots,x_n)\in \mathcal{C}\Longrightarrow (px_1,\ldots,p^{q-1}x_1,\ldots,px_n,\ldots,p^{q-1}x_n)\in\overline{\mathcal{C}}$$

Fundamental Properties of the Closure

• If $C \sim C'$ w.r.t. LCE $\Longrightarrow \overline{C} \sim \overline{C'}$ w.r.t. PCE

- ▶ ∃ a block-wise permutation σ of $\mathcal{M} \triangleleft S_{(q-1)n}$ such that $\overline{C'} = \sigma(\overline{C})$
- If C is an [n, k, d] code $\Longrightarrow \overline{C}$ is an [(q-1)n, k, (q-1)d] code

The Closure of a Linear Code (II)

The Closure is a Weakly Self-Dual Code

 $\forall \ \overline{x}, \overline{y} \in \overline{C}$ the Euclidean inner product is

$$\overline{x} \cdot \overline{y} = \underbrace{\left(\sum_{j=1}^{q-1} p^{2j}\right)}_{=0 \text{ over } \mathbb{F}_q, \ q \ge 5} \left(\sum_i x_i y_i\right) = 0$$

- Clearly $\dim(\mathcal{H}(\overline{C})) = \dim(\overline{C})$ and SSA runs in $\mathcal{O}(2^{\dim(\mathcal{H}(\overline{C}))})$
- \blacktriangleright The closure reduces $\rm LCE$ to the hard instances of \mathcal{SSA} for $\rm PCE$
- Exceptions are for q = 3 and q = 4 with the Hermitian inner product

Building Efficient Invariants from the Closure

- ▶ For any invariant \mathcal{V} the mapping $C \mapsto \mathcal{V}(\mathcal{H}(\overline{C}))$ is an invariant
- ► The dimension of the hull over \mathbb{F}_q is on average a small constant

The Extension of the Dual Code

Extension of the Dual

Let β be a primitive element of \mathbb{F}_q and C^{\perp} the dual code of $C \subseteq \mathbb{F}_q^n$. Define $\widehat{C}_i = \{\beta^i x \mid \beta \in \mathbb{F}_q^*, x \in C^{\perp}\}$. The extension of the dual code is a code of length (q-1)n and dimension (q-1)(n-k) where $\dim(C) = k$ and is given by the direct sum

$$\widehat{C} = \bigoplus_{i=1}^{q-1} \widehat{C}_i = \widehat{C}_1 \bigoplus \ldots \bigoplus \widehat{C}_{q-1}$$

Fundamental Properties of the Extension

▶ If $C^{\perp} \sim C'^{\perp}$ w.r.t. LCE $\implies \widehat{C} \sim \widehat{C'}$ w.r.t. PCE

Towards a Generalization of \mathcal{SSA}

A Good Signature for \mathbb{F}_3 and \mathbb{F}_4

•
$$\overline{\mathcal{H}(C)} = \mathcal{H}(\overline{C}) = \overline{C} \cap \widehat{C}$$
 (valid only for these fields)

$$\blacktriangleright S(\overline{C},i) = \mathcal{W}_{\mathcal{H}(\overline{C_i})}(X)$$

An Efficient Algorithm for Solving LCE

• Compute
$$\overline{C}, \overline{C'}$$
 and $\widehat{C}, \widehat{C'}$

● If
$$\mathcal{P}'(S, \overline{C'}) = \sigma(\mathcal{P}(S, \overline{C}))$$
 return σ ; else $C \nsim C'$ w.r.t. LCE

• $\overline{C'} = \sigma(\overline{C})$ and a Gaussian elimination (GE) on the permuted generator matrices of the closures will reveal the scaling coefficients

 \blacktriangleright For ${\rm SLCE}$ we only have to consider an additional GE

・ロト ・雪 ト ・ ヨ ト

Generalized Hulls of Linear Codes

What about \mathbb{F}_q , $q \geq 5$?

- ▶ If $C \sim C'$ w.r.t. LCE or SLCE $\implies \mathcal{H}(C) \sim \mathcal{H}(C')$ w.r.t. LCE or SLCE is **not** true
- ▶ The hull is not an invariant for LCE or SLCE over \mathbb{F}_q , $q \ge 5$

The Generalized Hull Let $C \subseteq \mathbb{F}_q^n$ and an *n*-tuple $a = (a_i)_{i \in I_n}$ of $(\mathbb{F}_q^*)^n$. Define the dual code $C_a^{\perp} = \{x \bullet c = 0 \mid x \in \mathbb{F}_q^n, c \in C\}$ w.r.t. to the inner product

$$x \bullet y = \sum_{i=1}^n a_i x_i y_i$$

- Hull w.r.t. a: $\mathcal{H}_a(C) = C \cap C_a^{\perp}$
- If we consider all $a \in (\mathbb{F}_q^*)^n$ we obtain $(q-1)^n$ different hulls
- The generalized hull is an invariant for LCE

Research Problems

Related to the Closure

- If C' = σ(C) for some σ of M ⊲ S_{(q-1)n} what is the structure of the subgroup M?
- ▶ Other reductions of LCE or SLCE to PCE?

Conjecture

- ▶ LCE or SLCE seems to be hard over \mathbb{F}_q , $q \ge 5$
- Can we build zero-knowledge protocols based on the hardness of LCE or SLCE?

Related to the Generalized Hull

• Can we find a practical application of $\mathcal{H}_a(C)$?

Summary

Highlights

- We defined the closure of a linear code and the extension of its dual
- We conjectured that the (SEMI)-LINEAR CODE EQUIVALENCE problem over \mathbb{F}_q , $q \geq 5$ is hard on the average case

Summary

Highlights

• We defined the closure of a linear code and the extension of its dual

- We conjectured that the (SEMI)-LINEAR CODE EQUIVALENCE problem over 𝑘_q, q ≥ 5 is hard on the average case

Future Work

Solve (some) of the research problems..!

References

📎 László Babai, Paolo Codenotti, Joshua Grochow and Youming Qiao, "Code equivalence and group isomorphism," In Proc. 22nd Ann. Symp. on Discrete Algorithms (SODA 2011), pages 1395-1408. ACM-SIAM, 2011.

🔈 D. J. Bernstein, T. Lange and C. Peters, "Wild McEliece," In SAC 2010, Lecture Notes in Computer Science, vol. 6544, pp. 143–158. Springer-Verlag, 2011.

E. Petrank and R. M. Roth, "Is code equivalence easy to decide?," IEEE Trans. Inf. Theory, vol. 43, pp. 1602–1604, 1997.

N. Sendrier, "Finding the permutation between equivalent codes: the support splitting algorithm," IEEE Trans. Inf. Theory, vol. 46, pp. 1193-1203, 2000.

Questions - Comments

Thanks for your Attention!

Merci Beaucoup!

イロト イポト イヨト イヨト 三日