How Easy is Code Equivalence over $G F(q)$?

Dimitris E. Simos
(joint work with Nicolas Sendrier)

Project-Team SECRET
INRIA Paris-Rocquencourt

October 10, 2012
Journées Codage et Cryptographie (C2)
Dinard, France

Outline of the Talk

(1) Code Equivalence Problem

- Motivation
- Previous Work

Outline of the Talk

(1) Code Equivalence Problem

- Motivation
- Previous Work
(2) Support Splitting Algorithm
- Mechanics
- Generalization

Outline of the Talk

(1) Code Equivalence Problem

- Motivation
- Previous Work
(2) Support Splitting Algorithm
- Mechanics
- Generalization
(3) Research Problems

Code Equivalence of Linear Codes

Equivalence of Linear Codes over \mathbb{F}_{q}

- Two linear codes $C, C^{\prime} \subseteq \mathbb{F}_{q}^{n}$ are called semi-linear equivalent if there exist a permutation σ of $I_{n}=\{1, \ldots, n\}$, an n-tuple $\lambda=\left(\lambda_{i}\right)_{i \in I_{n}}$ of $\left(\mathbb{F}_{q}^{*}\right)^{n}$ and a field automorphism $\alpha \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$:

$$
\left(x_{i}\right)_{i \in I_{n}} \in C \Longleftrightarrow\left(\alpha\left(\lambda_{\sigma^{-1}(i)} x_{\sigma^{-1}(i)}\right)\right)_{i \in I_{n}} \in C^{\prime}
$$

- If q is prime, $\operatorname{Aut}\left(\mathbb{F}_{q}\right)$ is trivial $\Longrightarrow C$ is linear equivalent to C^{\prime}
- If $q=2, \lambda_{i}=1, i \in I_{n} \Longrightarrow C$ is permutation equivalent to C^{\prime}
- Notation: C $\sim C^{\prime}$

Code Equivalence Problem

- Input: Two $[n, k]$ linear codes C and C^{\prime} over \mathbb{F}_{q}
- Decide: Are $C \sim C^{\prime}$?
- Search: Given $C \sim C^{\prime}$, find $\sigma \in \mathcal{S}_{n}, \lambda \in\left(\mathbb{F}_{q}^{*}\right)^{n}, \alpha \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$

Motivation for Code Equivalence

Relation to Error-Correcting Capability
Equivalent codes have the same error-correction properties (i.e. decoding)

Classification

Enumeration of equivalence classes of linear codes
Application in Code-based Cryptography

- The public key of the McEliece cryptosystem is a randomly permuted binary Goppa code [McEliece, 1978]
- McEliece-like cryptosystems over \mathbb{F}_{q} have recently emerged
- Wild Goppa codes [Bernstein, Lange and Peters, 2010]
- Identification schemes from error-correcting codes
- Zero-knowledge protocols [Girault, 1990]

What is known for Code Equivalence?

Algorithms and Complexity
Complexity
$\overline{\mathrm{PCE}}$ over \mathbb{F}_{2} is difficult to decide in the worst case:
(1) not NP-complete
(2) at least as hard as Graph Isomorphism [Petrank and Roth, 1997]
(3) Recent result for $\mathbb{F}_{q}: \mathrm{GI} \preceq \mathrm{PCE}$ [Grochow, 2012]
(- Assuming an oracle for LCE or SLCE $\Longrightarrow \mathrm{PCE} \preceq \mathrm{LCE}$ or SLCE
(5) PCE over \mathbb{F}_{q} resists quantum Fourier sampling; Reduction of PCE to the Hidden Subgroup Problem [Dinh, Moore and Russell, 2011]

Recent Algorithms

- Adaptation of Hypergraph Isomorphism algorithms for PCE over \mathbb{F}_{q} [Babai, Codenotti and Grochow, 2011]
- Computation of canonical forms of linear codes for LCE over \mathbb{F}_{q}, for q small [Feulner, 2009, 2011]
- Support splitting algorithm for PCE over \mathbb{F}_{q} [Sendrier, 2000]
- No efficient algorithm for LCE or SLCE is known

Invariants and Signatures

for a given Linear Code
Invariants of a Code

- A mapping \mathcal{V} is an invariant if $C \sim C^{\prime} \Rightarrow \mathcal{V}(C)=\mathcal{V}\left(C^{\prime}\right)$
- Any invariant is a global property of a code

Weight Enumerators are Invariants

- $C \sim C^{\prime} \Rightarrow \mathcal{W}_{C}(X)=\mathcal{W}_{C^{\prime}}(X)$ or $\mathcal{W}_{C}(X) \neq \mathcal{W}_{C^{\prime}}(X) \Rightarrow C \nsim C^{\prime}$
- $\mathcal{W}_{C}(X)=\sum_{i=0}^{n} A_{i} X^{i}$ and $A_{i}=|\{c \in C \mid w(c)=i\}|$

Signature of a Code

- A mapping S is a signature if $S(\sigma(C), \sigma(i))=S(C, i)$
- Property of the code and one of its positions (local property)

Building a Signature from an Invariant

(1) If \mathcal{V} is an invariant, then $S_{\mathcal{V}}:(C, i) \mapsto \mathcal{V}\left(C_{\{i\}}\right)$ is a signature
(2) where $C_{\{i\}}$ is obtained by puncturing the code C on i
(3) If $C^{\prime}=\sigma(C) \Rightarrow \mathcal{V}\left(C_{\{i\}}\right)=\mathcal{V}\left(C_{\{\sigma(i)\}}^{\prime}\right), \forall i \in I_{n}$, i.e. $\mathcal{V}=\mathcal{W}$

The Support Splitting Algorithm (I)

Design of the Algorithm
Discriminant Signatures
(1) A signature S is discriminant for C if $\exists i \neq j, S(C, i) \neq S(C, j)$
(2) S is fully discriminant for C if $\forall i \neq j, S(C, i) \neq S(C, j)$

The Procedure [Sendrier, 2000]

- From given signature S and code C, we wish to build a sequence $S_{0}=S, S_{1}, \ldots, S_{r}$ of signatures of increasing "discriminancy" such that S_{r} is fully discriminant for C
- Achieved by succesive refinements of the signature S

Properties of $\mathcal{S S A}$
(1) $\mathcal{S S A} \mathcal{A}(C)$ returns a labeled partition $\mathcal{P}(S, C)$ of I_{n}
(2) Assuming the existence of a fully discriminant signature, $\mathcal{S S} \mathcal{A}(C)$ recovers the desired permutation σ of $C^{\prime}=\sigma(C)$

Fully Discriminant Signatures

Statement

If $C^{\prime}=\sigma(C)$ and S is fully discriminant for C then $\forall i \in I_{n} \exists$ unique $j \in I_{n}$ such that $S(C, i)=S\left(C^{\prime}, j\right)$ and $\sigma(i)=j$
An Example of a Fully Discriminant Signature

$$
\begin{gathered}
C=\{1110,0111,1010\} \text { and } C^{\prime}=\{0011,1011,1101\} \\
\left\{\begin{array}{lll}
C_{\{1\}}=\{110,111,010\} & \rightarrow & \mathcal{W}_{C_{\{1\}}}(X)=X+X^{2}+X^{3} \\
C_{\{2\}}=\{110,011\} & \rightarrow & \mathcal{W}_{C_{\{2\}}}(X)=2 X^{2} \\
C_{\{3\}}=\{110,011,100\} & \rightarrow & \mathcal{W}_{C_{\{3\}}}(X)=X+2 X^{2} \\
C_{\{4\}}=\{111,011,101\} & \rightarrow & \mathcal{W}_{C_{\{4\}}}(X)=2 X^{2}+X^{3}
\end{array}\right. \\
\left\{\begin{array}{lll}
C_{\{1\}}^{\prime}=\{011,101\} & \rightarrow & \mathcal{W}_{C_{\{1\}}^{\prime}}(X)=2 X^{2} \\
C_{\{2\}}^{\prime}=\{011,111,101\} & \rightarrow & \mathcal{W}_{C_{\{2\}}^{\prime}}^{\prime}(X)=2 X^{2}+X^{3} \\
C_{\{3\}}^{\prime}=\{001,101,111\} & \rightarrow & \mathcal{W}_{C_{\{3\}}^{\prime}}^{\prime}(X)=X+X^{2}+X^{3} \\
C_{\{4\}}^{\prime}=\{001,101,110\} & \rightarrow & \mathcal{W}_{C_{\{4\}}^{\prime}}^{\prime}(X)=X+2 X^{2}
\end{array}\right.
\end{gathered}
$$

$C^{\prime}=\sigma(C)$ where $\sigma(1)=3, \sigma(2)=1, \sigma(3)=4$ and $\sigma(4)=2$

How to Refine a Signature

An Example of a Refined Signature

$$
\begin{gathered}
C=\left\{\begin{aligned}
& C=\{01101,01011,01110,10101,11110\} \\
& C^{\prime}=\{10101,00111,10011,11100,11011\} \\
&\left\{\begin{array}{l}
\mathcal{W}_{C_{\{1\}}}(X)
\end{array}=X^{2}+3 X^{3}=\mathcal{W}_{C^{\prime}}^{\prime}(X) \Rightarrow \sigma(1)=2\right. \\
& \mathcal{W}_{C_{\{4\}}}(X)=2 X^{2}+3 X^{3}=\mathcal{W}_{C^{\prime}}^{\prime}(X) \Rightarrow \sigma(4)=4 \\
& \mathcal{W}_{C_{\{5\}}}(X)=3 X^{2}+X^{3}+X^{4}=\mathcal{W}_{C^{\prime}}^{\prime}(X) \Rightarrow \sigma(5)=3 \\
& \mathcal{W}_{C_{\{2\}}}(X)=3 X^{2}+2 X^{3} \\
& \mathcal{W}_{C_{\{3\}}}(X)=3 X^{2}+2 X^{3} \\
& \mathcal{W}_{\{3\}}^{\prime}(X)=\mathcal{W}_{C_{\{1\}}^{\prime}}(X)
\end{aligned}\right.
\end{gathered}
$$

Refinement: Positions $\{2,3\}$ in C and $\{1,5\}$ in C^{\prime} cannot be discriminated, but

$$
\begin{cases}\mathcal{W}_{C_{\{1,2\}}}(X)=3 X^{2} & =\mathcal{W}_{C^{\prime}}(X, 5\} \\ \mathcal{W}_{C_{\{1,3\}}}(X)=X+2 X^{2}+X^{3}= & \Rightarrow \sigma(\{1,2\})=\{2,5\} \\ \mathcal{W}_{\{2,1\}}^{\prime}(X) & \Rightarrow \sigma(\{1,3\})=\{2,1\}\end{cases}
$$

Thus $\sigma(1)=2, \sigma(2)=5, \sigma(3)=1, \sigma(4)=4$ and $\sigma(5)=3$

Fundamental Properties of $\mathcal{S S A}$

(1) If $C^{\prime}=\sigma(C)$ then $\mathcal{P}^{\prime}\left(S, C^{\prime}\right)=\sigma(\mathcal{P}(S, C))$
(2) The output of $\mathcal{S S} \mathcal{A}(C)$ where $C=<G>$ is independent of G

The Support Splitting Algorithm (II)

Practical issues

A Good Signature
The mapping $(C, i) \mapsto \mathcal{W}_{\mathcal{H}\left(C_{i}\right)}(X)$ where $\mathcal{H}(C)=C \cap C^{\perp}$ is a signature which is, for random codes,

- easy to compute because of the small dimension [Sendrier, 1997]
- discriminant, i.e. $\mathcal{W}_{\mathcal{H}\left(C_{i}\right)}(X)$ and $\mathcal{W}_{\mathcal{H}\left(C_{j}\right)}(X)$ are "often" different

Algorithmic Cost

Let C be a binary code of length n, and let $h=\operatorname{dim}(\mathcal{H}(C))$:

- First step: $\mathcal{O}\left(n^{3}\right)+\mathcal{O}\left(n 2^{h}\right)$
- Each refinement: $\mathcal{O}\left(h n^{2}\right)+\mathcal{O}\left(n 2^{h}\right)$
- Number of refinements: $\approx \log n$

Total (heuristic) complexity: $\mathcal{O}\left(n^{3}+2^{h} n^{2} \log n\right)$

- When $h \longrightarrow 0 \Longrightarrow \mathcal{S S A}$ runs in polynomial time

The Closure of a Linear Code (I)

Approach for the Generalization of $\mathcal{S S A}$

- Reduce LCE or SLCE to PCE
- Recall that $\mathcal{S S} \mathcal{A}$ solves PCE in $\mathcal{O}\left(n^{3}\right)$ (for "several" instances)

Closure of a Code

Let p be a primitive element of \mathbb{F}_{q}. The closure \bar{C} of a code $C \subseteq \mathbb{F}_{q}^{n}$ is a code of length $(q-1) n$ over the same field where:

$$
\left(x_{1}, \ldots, x_{n}\right) \in C \Longrightarrow\left(p x_{1}, \ldots, p^{q-1} x_{1}, \ldots, p x_{n}, \ldots, p^{q-1} x_{n}\right) \in \bar{C}
$$

Fundamental Properties of the Closure

- If $C \sim C^{\prime}$ w.r.t. LCE $\Longrightarrow \bar{C} \sim \overline{C^{\prime}}$ w.r.t. PCE
- \exists a block-wise permutation σ of $\mathcal{M} \triangleleft \mathcal{S}_{(q-1) n}$ such that $\overline{C^{\prime}}=\sigma(\bar{C})$
- If C is an $[n, k, d]$ code $\Longrightarrow \bar{C}$ is an $[(q-1) n, k,(q-1) d]$ code

The Closure of a Linear Code (II)

The Closure is a Weakly Self-Dual Code
$\forall \bar{x}, \bar{y} \in \bar{C}$ the Euclidean inner product is

$$
\bar{x} \cdot \bar{y}=\underbrace{\left(\sum_{j=1}^{q-1} p^{2 j}\right)}_{=0 \text { over } \mathbb{F}_{q}, q \geq 5}\left(\sum_{i} x_{i} y_{i}\right)=0
$$

- Clearly $\operatorname{dim}(\mathcal{H}(\bar{C}))=\operatorname{dim}(\bar{C})$ and $\mathcal{S S} \mathcal{A}$ runs in $\mathcal{O}\left(2^{\operatorname{dim}(\mathcal{H}(\bar{C}))}\right)$
- The closure reduces LCE to the hard instances of $\mathcal{S S A}$ for PCE
- Exceptions are for $q=3$ and $q=4$ with the Hermitian inner product

Building Efficient Invariants from the Closure

- For any invariant \mathcal{V} the mapping $C \longmapsto \mathcal{V}(\mathcal{H}(\bar{C}))$ is an invariant
- The dimension of the hull over \mathbb{F}_{q} is on average a small constant

The Extension of the Dual Code

Extension of the Dual

Let β be a primitive element of \mathbb{F}_{q} and C^{\perp} the dual code of $C \subseteq \mathbb{F}_{q}^{n}$. Define $\widehat{C}_{i}=\left\{\beta^{i} x \mid \beta \in \mathbb{F}_{q}^{*}, x \in C^{\perp}\right\}$. The extension of the dual code is a code of length $(q-1) n$ and dimension $(q-1)(n-k)$ where $\operatorname{dim}(C)=k$ and is given by the direct sum

$$
\widehat{C}=\bigoplus_{i=1}^{q-1} \widehat{C}_{i}=\widehat{C}_{1} \bigoplus \ldots \bigoplus \widehat{C}_{q-1}
$$

Fundamental Properties of the Extension

- If $C^{\perp} \sim C^{\perp}$ w.r.t. LCE $\Longrightarrow \widehat{C} \sim \widehat{C^{\prime}}$ w.r.t. PCE
- $\overline{\mathcal{H}(C)}=\bar{C} \cap \widehat{C}$
- If $\operatorname{dim}(\mathcal{H}(C))=h \Longrightarrow \operatorname{dim}(\bar{C} \cap \widehat{C})=h$

Towards a Generalization of $\mathcal{S S A}$

A Good Signature for \mathbb{F}_{3} and \mathbb{F}_{4}

- $\overline{\mathcal{H}(C)}=\mathcal{H}(\bar{C})=\bar{C} \cap \widehat{C}$ (valid only for these fields)
- $S(\bar{C}, i)=\mathcal{W}_{\mathcal{H}\left(\overline{C_{i}}\right)}(X)$

An Efficient Algorithm for Solving LCE

- Input: C, C^{\prime}, S
(1) Compute $\bar{C}, \overline{C^{\prime}}$ and $\widehat{C}, \widehat{C^{\prime}}$
(2) $\mathcal{P}(S, \bar{C}) \longleftarrow \mathcal{S S A}(\bar{C})$ and $\mathcal{P}^{\prime}\left(S, \overline{C^{\prime}}\right) \longleftarrow \mathcal{S S A}\left(\overline{C^{\prime}}\right)$
(0) If $\mathcal{P}^{\prime}\left(S, \overline{C^{\prime}}\right)=\sigma(\mathcal{P}(S, \bar{C}))$ return σ; else $C \nsim C^{\prime}$ w.r.t. LCE
- $\overline{C^{\prime}}=\sigma(\bar{C})$ and a Gaussian elimination (GE) on the permuted generator matrices of the closures will reveal the scaling coefficients
- For SLCE we only have to consider an additional GE

Generalized Hulls of Linear Codes

What about $\mathbb{F}_{q}, q \geq 5$?

- If $C \sim C^{\prime}$ w.r.t. LCE or $\mathrm{SLCE} \Longrightarrow \mathcal{H}(C) \sim \mathcal{H}\left(C^{\prime}\right)$ w.r.t. LCE or SLCE is not true
- The hull is not an invariant for LCE or SLCE over $\mathbb{F}_{q}, q \geq 5$

The Generalized Hull
Let $C \subseteq \mathbb{F}_{q}^{n}$ and an n-tuple $a=\left(a_{i}\right)_{i \in I_{n}}$ of $\left(\mathbb{F}_{q}^{*}\right)^{n}$. Define the dual code $C_{a}^{\perp}=\left\{x \bullet c=0 \mid x \in \mathbb{F}_{q}^{n}, c \in C\right\}$ w.r.t. to the inner product

$$
x \bullet y=\sum_{i=1}^{n} a_{i} x_{i} y_{i}
$$

- Hull w.r.t. a: $\mathcal{H}_{a}(C)=C \cap C_{a}^{\perp}$
- If we consider all $a \in\left(\mathbb{F}_{q}^{*}\right)^{n}$ we obtain $(q-1)^{n}$ different hulls
- The generalized hull is an invariant for LCE

Research Problems

Related to the Closure

- If $\overline{C^{\prime}}=\sigma(\bar{C})$ for some σ of $\mathcal{M} \triangleleft \mathcal{S}_{(q-1) n}$ what is the structure of the subgroup \mathcal{M} ?
- Other reductions of LCE or SLCE to PCE?

Conjecture

- LCE or SLCE seems to be hard over $\mathbb{F}_{q}, q \geq 5$
- Can we build zero-knowledge protocols based on the hardness of LCE or SLCE?

Related to the Generalized Hull

- Can we find a practical application of $\mathcal{H}_{a}(C)$?

Summary

Highlights

(1) We defined the closure of a linear code and the extension of its dual
(2) We presented a generalization of the support splitting algorithm for solving the Linear Code Equivalence problem for \mathbb{F}_{3} and \mathbb{F}_{4}
(3) We conjectured that the (Semi)-Linear Code Equivalence problem over $\mathbb{F}_{q}, q \geq 5$ is hard on the average case

Summary

Highlights

(1) We defined the closure of a linear code and the extension of its dual
(2) We presented a generalization of the support splitting algorithm for solving the Linear Code Equivalence problem for \mathbb{F}_{3} and \mathbb{F}_{4}
(3) We conjectured that the (Semi)-Linear Code Equivalence problem over $\mathbb{F}_{q}, q \geq 5$ is hard on the average case

Future Work

Solve (some) of the research problems..!

References

László Babai, Paolo Codenotti, Joshua Grochow and Youming Qiao, "Code equivalence and group isomorphism," In Proc. 22nd Ann. Symp. on Discrete Algorithms (SODA 2011), pages 1395-1408. ACM-SIAM, 2011.

Q D. J. Bernstein, T. Lange and C. Peters, "Wild McEliece," In SAC 2010, Lecture Notes in Computer Science, vol. 6544, pp. 143-158. Springer-Verlag, 2011.
E. Petrank and R. M. Roth, "Is code equivalence easy to decide?," IEEE Trans. Inf. Theory, vol. 43, pp. 1602-1604, 1997.
圊 N. Sendrier, "On the dimension of the hull," SIAM J. Discete Math., vol. 10, pp. 282-293, 1997.
N. Sendrier, "Finding the permutation between equivalent codes: the support splitting algorithm," IEEE Trans. Inf. Theory, vol. 46, pp. 1193-1203, 2000.

Questions - Comments

Thanks for your Attention!

Merci Beaucoup!

