
How Easy is Code Equivalence over GF (q)?

Dimitris E. Simos
(joint work with Nicolas Sendrier)

Project-Team SECRET
INRIA Paris-Rocquencourt

October 10, 2012
Journées Codage et Cryptographie (C2)

Dinard, France

Dimitris E. Simos @ C2 ’12 1/19

Outline of the Talk

1 Code Equivalence Problem
Motivation
Previous Work

2 Support Splitting Algorithm
Mechanics
Generalization

3 Research Problems

Dimitris E. Simos @ C2 ’12 2/19

Outline of the Talk

1 Code Equivalence Problem
Motivation
Previous Work

2 Support Splitting Algorithm
Mechanics
Generalization

3 Research Problems

Dimitris E. Simos @ C2 ’12 2/19

Outline of the Talk

1 Code Equivalence Problem
Motivation
Previous Work

2 Support Splitting Algorithm
Mechanics
Generalization

3 Research Problems

Dimitris E. Simos @ C2 ’12 2/19

Code Equivalence of Linear Codes
Equivalence of Linear Codes over Fq

I Two linear codes C ,C ′ ⊆ Fn
q are called semi-linear equivalent if

there exist a permutation σ of In = {1, . . . , n}, an n-tuple
λ = (λi)i∈In of (F∗q)n and a field automorphism α ∈ Aut(Fq):

(xi)i∈In ∈ C ⇐⇒ (α(λσ−1(i)xσ−1(i)))i∈In ∈ C ′

I If q is prime, Aut(Fq) is trivial =⇒ C is linear equivalent to C ′

I If q = 2, λi = 1, i ∈ In =⇒ C is permutation equivalent to C ′

I Notation: C ∼ C ′

Code Equivalence Problem
I Input: Two [n, k] linear codes C and C ′ over Fq

I Decide: Are C ∼ C ′?
I Search: Given C ∼ C ′, find σ ∈ Sn, λ ∈ (F∗q)n, α ∈ Aut(Fq)

Dimitris E. Simos @ C2 ’12 3/19

Motivation for Code Equivalence
Relation to Error-Correcting Capability
Equivalent codes have the same error-correction properties (i.e. decoding)

Classification
Enumeration of equivalence classes of linear codes

Application in Code-based Cryptography
I The public key of the McEliece cryptosystem is a randomly permuted

binary Goppa code [McEliece, 1978]
I McEliece-like cryptosystems over Fq have recently emerged

I Wild Goppa codes [Bernstein, Lange and Peters, 2010]
I Identification schemes from error-correcting codes

I Zero-knowledge protocols [Girault, 1990]

Dimitris E. Simos @ C2 ’12 4/19

What is known for Code Equivalence?
Algorithms and Complexity

Complexity
PCE over F2 is difficult to decide in the worst case:

1 not NP-complete
2 at least as hard as Graph Isomorphism [Petrank and Roth, 1997]
3 Recent result for Fq: GI � PCE [Grochow, 2012]
4 Assuming an oracle for LCE or SLCE =⇒ PCE � LCE or SLCE
5 PCE over Fq resists quantum Fourier sampling; Reduction of PCE to the

Hidden Subgroup Problem [Dinh, Moore and Russell, 2011]

Recent Algorithms
I Adaptation of Hypergraph Isomorphism algorithms for PCE over Fq

[Babai, Codenotti and Grochow, 2011]
I Computation of canonical forms of linear codes for LCE over Fq, for q

small [Feulner, 2009, 2011]
I Support splitting algorithm for PCE over Fq [Sendrier, 2000]
I No efficient algorithm for LCE or SLCE is known

Dimitris E. Simos @ C2 ’12 5/19

Invariants and Signatures
for a given Linear Code

Invariants of a Code
I A mapping V is an invariant if C ∼ C ′ ⇒ V(C) = V(C ′)
I Any invariant is a global property of a code

Weight Enumerators are Invariants
I C ∼ C ′ ⇒WC (X) =WC ′(X) or WC (X) 6=WC ′(X)⇒ C 6∼ C ′
I WC (X) =

∑n
i=0 AiX i and Ai =| {c ∈ C | w(c) = i} |

Signature of a Code
I A mapping S is a signature if S(σ(C), σ(i)) = S(C , i)
I Property of the code and one of its positions (local property)

Building a Signature from an Invariant
1 If V is an invariant, then SV : (C , i) 7→ V(C{i}) is a signature
2 where C{i} is obtained by puncturing the code C on i
3 If C ′ = σ(C)⇒ V(C{i}) = V(C ′{σ(i)}), ∀ i ∈ In, i.e. V =W

Dimitris E. Simos @ C2 ’12 6/19

The Support Splitting Algorithm (I)
Design of the Algorithm

Discriminant Signatures
1 A signature S is discriminant for C if ∃ i 6= j ,S(C , i) 6= S(C , j)
2 S is fully discriminant for C if ∀ i 6= j ,S(C , i) 6= S(C , j)

The Procedure [Sendrier, 2000]
I From given signature S and code C , we wish to build a sequence

S0 = S,S1, . . . ,Sr of signatures of increasing “discriminancy” such
that Sr is fully discriminant for C

I Achieved by succesive refinements of the signature S

Properties of SSA
1 SSA(C) returns a labeled partition P(S,C) of In
2 Assuming the existence of a fully discriminant signature, SSA(C)

recovers the desired permutation σ of C ′ = σ(C)

Dimitris E. Simos @ C2 ’12 7/19

Fully Discriminant Signatures
Statement
If C ′ = σ(C) and S is fully discriminant for C then ∀ i ∈ In ∃ unique j ∈ In such
that S(C , i) = S(C ′, j) and σ(i) = j
An Example of a Fully Discriminant Signature

C = {1110, 0111, 1010} and C ′ = {0011, 1011, 1101}
C{1} = {110, 111, 010} → WC{1}(X) = X + X 2 + X 3

C{2} = {110, 011} → WC{2}(X) = 2X 2

C{3} = {110, 011, 100} → WC{3}(X) = X + 2X 2

C{4} = {111, 011, 101} → WC{4}(X) = 2X 2 + X 3
C ′{1} = {011, 101} → WC ′{1}

(X) = 2X 2

C ′{2} = {011, 111, 101} → WC ′{2}
(X) = 2X 2 + X 3

C ′{3} = {001, 101, 111} → WC ′{3}
(X) = X + X 2 + X 3

C ′{4} = {001, 101, 110} → WC ′{4}
(X) = X + 2X 2

C ′ = σ(C) where σ(1) = 3, σ(2) = 1, σ(3) = 4 and σ(4) = 2

Dimitris E. Simos @ C2 ’12 8/19

How to Refine a Signature
An Example of a Refined Signature

C = {01101, 01011, 01110, 10101, 11110}
C ′ = {10101, 00111, 10011, 11100, 11011}

WC{1} (X) = X 2 + 3X 3 = WC′
{2}

(X) ⇒ σ(1) = 2

WC{4} (X) = 2X 2 + 3X 3 = WC′
{4}

(X) ⇒ σ(4) = 4

WC{5} (X) = 3X 2 + X 3 + X 4 = WC′
{3}

(X) ⇒ σ(5) = 3

WC{2} (X) = 3X 2 + 2X 3 = WC′
{1}

(X)

WC{3} (X) = 3X 2 + 2X 3 = WC′
{5}

(X)

Refinement: Positions {2, 3} in C and {1, 5} in C ′ cannot be discriminated, but{ WC{1,2} (X) = 3X 2 = WC′
{2,5}

(X) ⇒ σ({1, 2}) = {2, 5}

WC{1,3} (X) = X + 2X 2 + X 3 = WC′
{2,1}

(X) ⇒ σ({1, 3}) = {2, 1}

Thus σ(1) = 2, σ(2) = 5, σ(3) = 1, σ(4) = 4 and σ(5) = 3

Fundamental Properties of SSA
1 If C ′ = σ(C) then P ′(S,C ′) = σ(P(S,C))
2 The output of SSA(C) where C =< G > is independent of G

Dimitris E. Simos @ C2 ’12 9/19

The Support Splitting Algorithm (II)
Practical Issues

A Good Signature
The mapping (C , i) 7→ WH(Ci)(X) where H(C) = C ∩ C⊥ is a signature
which is, for random codes,

I easy to compute because of the small dimension [Sendrier, 1997]
I discriminant, i.e. WH(Ci)(X) and WH(Cj)(X) are “often” different

Algorithmic Cost
Let C be a binary code of length n, and let h = dim(H(C)):

I First step: O(n3) +O(n2h)

I Each refinement: O(hn2) +O(n2h)

I Number of refinements: ≈ log n
Total (heuristic) complexity: O(n3 + 2hn2 log n)

I When h −→ 0 =⇒ SSA runs in polynomial time

Dimitris E. Simos @ C2 ’12 10/19

The Closure of a Linear Code (I)
Approach for the Generalization of SSA
I Reduce LCE or SLCE to PCE
I Recall that SSA solves PCE in O(n3) (for “several” instances)

Closure of a Code
Let p be a primitive element of Fq. The closure C of a code C ⊆ Fn

q is a
code of length (q − 1)n over the same field where:

(x1, . . . , xn) ∈ C =⇒ (px1, . . . , pq−1x1, . . . , pxn, . . . , pq−1xn) ∈ C

Fundamental Properties of the Closure

I If C ∼ C ′ w.r.t. LCE =⇒ C ∼ C ′ w.r.t. PCE
I ∃ a block-wise permutation σ ofM / S(q−1)n such that C ′ = σ(C)

I If C is an [n, k, d] code =⇒ C is an [(q − 1)n, k, (q − 1)d] code

Dimitris E. Simos @ C2 ’12 11/19

The Closure of a Linear Code (II)
The Closure is a Weakly Self-Dual Code
∀ x , y ∈ C the Euclidean inner product is

x · y =

(q−1∑
j=1

p2j

)
︸ ︷︷ ︸

=0 over Fq, q≥5

(∑
i

xiyi

)
= 0

I Clearly dim(H(C)) = dim(C) and SSA runs in O(2dim(H(C)))

I The closure reduces LCE to the hard instances of SSA for PCE
I Exceptions are for q = 3 and q = 4 with the Hermitian inner product

Building Efficient Invariants from the Closure
I For any invariant V the mapping C 7−→ V(H(C)) is an invariant
I The dimension of the hull over Fq is on average a small constant

Dimitris E. Simos @ C2 ’12 12/19

The Extension of the Dual Code
Extension of the Dual
Let β be a primitive element of Fq and C⊥ the dual code of C ⊆ Fn

q.
Define Ĉi = {βix | β ∈ F∗q, x ∈ C⊥}. The extension of the dual code is a
code of length (q− 1)n and dimension (q− 1)(n− k) where dim(C) = k
and is given by the direct sum

Ĉ =

q−1⊕
i=1

Ĉi = Ĉ1
⊕

. . .
⊕

Ĉq−1

Fundamental Properties of the Extension

I If C⊥ ∼ C ′⊥ w.r.t. LCE =⇒ Ĉ ∼ Ĉ ′ w.r.t. PCE
I H(C) = C ∩ Ĉ
I If dim(H(C)) = h =⇒ dim(C ∩ Ĉ) = h

Dimitris E. Simos @ C2 ’12 13/19

Towards a Generalization of SSA
A Good Signature for F3 and F4

I H(C) = H(C) = C ∩ Ĉ (valid only for these fields)
I S(C , i) =WH(Ci)

(X)

An Efficient Algorithm for Solving LCE
• Input: C ,C ′,S

1 Compute C ,C ′ and Ĉ , Ĉ ′
2 P(S,C)←− SSA(C) and P ′(S,C ′)←− SSA(C ′)
3 If P ′(S,C ′) = σ(P(S,C)) return σ; else C � C ′ w.r.t. LCE
4 C ′ = σ(C) and a Gaussian elimination (GE) on the permuted

generator matrices of the closures will reveal the scaling coefficients

I For SLCE we only have to consider an additional GE

Dimitris E. Simos @ C2 ’12 14/19

Generalized Hulls of Linear Codes
What about Fq, q ≥ 5?
I If C ∼ C ′ w.r.t. LCE or SLCE =⇒ H(C) ∼ H(C ′) w.r.t. LCE or

SLCE is not true
I The hull is not an invariant for LCE or SLCE over Fq, q ≥ 5

The Generalized Hull
Let C ⊆ Fn

q and an n-tuple a = (ai)i∈In of (F∗q)n. Define the dual code
C⊥a = {x • c = 0 | x ∈ Fn

q, c ∈ C} w.r.t. to the inner product

x • y =
n∑

i=1
aixiyi

I Hull w.r.t. a: Ha(C) = C ∩ C⊥a
I If we consider all a ∈ (F∗q)n we obtain (q − 1)n different hulls
I The generalized hull is an invariant for LCE

Dimitris E. Simos @ C2 ’12 15/19

Research Problems

Related to the Closure
I If C ′ = σ(C) for some σ ofM / S(q−1)n what is the structure of the

subgroupM?
I Other reductions of LCE or SLCE to PCE?

Conjecture
I LCE or SLCE seems to be hard over Fq, q ≥ 5
I Can we build zero-knowledge protocols based on the hardness of

LCE or SLCE?
Related to the Generalized Hull
I Can we find a practical application of Ha(C)?

Dimitris E. Simos @ C2 ’12 16/19

Summary

Highlights
1 We defined the closure of a linear code and the extension of its dual
2 We presented a generalization of the support splitting algorithm for

solving the Linear Code Equivalence problem for F3 and F4
3 We conjectured that the (Semi)-Linear Code Equivalence

problem over Fq, q ≥ 5 is hard on the average case

Future Work
Solve (some) of the research problems..!

Dimitris E. Simos @ C2 ’12 17/19

Summary

Highlights
1 We defined the closure of a linear code and the extension of its dual
2 We presented a generalization of the support splitting algorithm for

solving the Linear Code Equivalence problem for F3 and F4
3 We conjectured that the (Semi)-Linear Code Equivalence

problem over Fq, q ≥ 5 is hard on the average case

Future Work
Solve (some) of the research problems..!

Dimitris E. Simos @ C2 ’12 17/19

References

László Babai, Paolo Codenotti, Joshua Grochow and Youming Qiao,
“Code equivalence and group isomorphism,” In Proc. 22nd Ann. Symp. on
Discrete Algorithms (SODA 2011), pages 1395-1408. ACM-SIAM, 2011.

D. J. Bernstein, T. Lange and C. Peters, “Wild McEliece,” In SAC 2010,
Lecture Notes in Computer Science, vol. 6544, pp. 143–158.
Springer-Verlag, 2011.

E. Petrank and R. M. Roth, “Is code equivalence easy to decide?,” IEEE
Trans. Inf. Theory, vol. 43, pp. 1602–1604, 1997.

N. Sendrier, “On the dimension of the hull,” SIAM J. Discete Math., vol.
10, pp. 282–293, 1997.

N. Sendrier, “Finding the permutation between equivalent codes: the
support splitting algorithm,” IEEE Trans. Inf. Theory, vol. 46, pp.
1193–1203, 2000.

Dimitris E. Simos @ C2 ’12 18/19

Questions - Comments

Thanks for your Attention!

Merci Beaucoup!

Dimitris E. Simos @ C2 ’12 19/19

	Code Equivalence Problem
	Motivation
	Previous Work

	Support Splitting Algorithm
	Mechanics
	Generalization

	Research Problems
	Conclusion

